估计阅读时长: 9 分钟https://github.com/xieguigang/sciBASIC 在实际应用的机器学习方法里,GradientTree Boosting (GBDT)是一个在很多应用里都很出彩的技术。XGBoost是一套提升树可扩展的机器学习系统。XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升。它是大规模并行boosted tree的工具,XGBoost 所应用的算法就是 GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中。 Order by Date Name […]
估计阅读时长: 30 分钟https://github.com/xieguigang/sciBASIC/ 线性规划(Linear programming,简称LP)方法起源于20世纪40年代,由美国数学家乔治·丹齐格(George Dantzig)提出,并设计了著名的“单纯形法”。这种优化算法是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。通俗点的来讲,就是我们基于这一种数学优化技术,用于在一组线性约束条件下,求解线性目标函数的最大值或最小值(就是在“有限资源”和“一定规则”下,找到“最佳方案”的一种方法)。 Order by Date Name Attachments linear-programming-example • 22 kB • 571 click […]
Visual a KDtree
估计阅读时长: 8 分钟https://github.com/xieguigang/sciBASIC 在进行无监督聚类分析的方法之中,我们在算法代码之中一般会遇到求解与某一个样本数据点最相似的数据点的计算过程。对于这个计算过程,一般而言我们是基于欧几里得距离来完成的。 Order by Date Name Attachments Visual a KDtree Search • 274 kB • 546 […]
Automated Optimal Parameters for T-Distributed Stochastic Neighbor Embedding Improve Visualization and Allow Analysis of Large Datasets
估计阅读时长: 11 分钟PhenoGraph提供了与UMAP类似的算法过程进行单细胞组学数据的细胞分型处理操作。与UMAP方法相比,PhenoGraph并不会产生数据降维效果,仅仅产生数据点Cluster信息。如果需要将数据进行可视化,还需要借助于t-SNE算法将PhenoGraph的分型结果数据投影到一个二维平面上完成。 Order by Date Name Attachments Phenograph-image4 • 200 kB • 487 click 2021年8月9日Automated Optimal Parameters […]
Metavirome network
估计阅读时长: 11 分钟https://github.com/xieguigang/sciBASIC Louvain算法是基于模块度的网络节点集群发现算法。该算法在效率和效果上都表现较好,并且能够发现层次性的网络节点集群结构,其优化目标是最大化整个网络集群模块的模块度(Modularity)。 Order by Date Name Attachments graph • 2 MB • 501 click 2021年8月7日Metavirome network […]
估计阅读时长: 8 分钟https://github.com/xieguigang/sciBASIC/tree/master/Data_science/Mathematica/SignalProcessing 进行峰识别是在代谢组学原始数据分析之中进行定量分析的很重要的一环。在代谢组学之中,定量分析分为靶向定量,以及非靶向定量计算这两大部分。 Order by Date Name Attachments Figure12.36 • 50 kB • 508 click 2021年7月10日view_signal • […]
估计阅读时长: 16 分钟https://github.com/xieguigang/sciBASIC 等高线指的是地形图上高程相等的相邻各点所连成的闭合曲线。把地面上海拔高度相同的点连成的闭合曲线,并垂直投影到一个水平面上,并按比例缩绘在图纸上,就得到等高线。 Order by Date Name Attachments 1_Contour • 487 kB • 621 click 2021年6月30日Ms1Contour • […]
估计阅读时长: 8 分钟https://github.com/rsharp-lang/R-sharp 对于0,1两类分类问题,一些分类器得到的结果往往不是0,1这样的标签。如神经网络得到诸如0.5,0.8这样的分类结果。这时,我们人为取一个阈值,比如0.4,那么小于0.4的归为0类,大于等于0.4的归为1类,可以得到一个分类结果。同样,这个阈值我们可以取0.1或0.2等等。 Order by Date Name Attachments ROC • 221 kB • 556 click 2021年6月28日Roccurves • […]
MNIST-LabelledVectorArray-60000x100
估计阅读时长: 23 分钟https://github.com/rsharp-lang/R-sharp 降维是将数据由高维约减到低维的过程而用来揭示数据的本质低维结构。它作为克服“维数灾难”的途径在这些相关领域中扮演着重要的角色。在过去的几十年里,有大量的降维方法被不断地提出并被深入研究,其中常用的包括传统的降维算法如PCA和MDS;流形学习算法如UMAP、t-SNE、ISOMAP、LE以及LTSA等。 Order by Date Name Attachments MNIST-LabelledVectorArray-60000x100 • 230 kB • 647 click 2021年6月27日MNIST-LabelledVectorArray-60000x100Euclidean_Distance • […]
估计阅读时长: 7 分钟https://github.com/xieguigang/mzkit SMILES字符串是一种在计算化学领域内使用线性ASCII字符串描述一个具有空间立体结构的分子结构所使用的一种语言规范。因为在工作中会需要使用到SMILES字符串做一些分子结构相关的数据建模分析,所以编写了一个很方便的用于SMILES字符串解析操作的模块,在这篇文章中为大家讲解具体的工作原理。 Order by Date Name Attachments science-connection-structure-with-molecules-simple-modern-white-background-illustration_46577-719 • 36 kB • 511 click 2021年6月9日abstract-molecules-structure-with-connect-spherical-particles_46577-689 • […]
博客文章
December 2025
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. 谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型

  2. WOW, display an image on a char only console this is really cool, I like this post because so much…

  3. 确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。